Technology

How ChainGPT and Secret Network Bring Private, Verifiable AI Coding On-Chain

A step forward that could influence how smart contracts are designed and verified.

Updated

November 27, 2025 3:26 PM

ChainGPT's robot mascot. IMAGE: CHAINGPT

A new collaboration between ChainGPT, an AI company specialising in blockchain development tools and Secret Network, a privacy-focused blockchain platform, is redefining how developers can safely build smart contracts with artificial intelligence. Together, they’ve achieved a major industry first: an AI model trained exclusively to write and audit Solidity code is now running inside a Trusted Execution Environment (TEE). For the blockchain ecosystem, this marks a turning point in how AI, privacy and on-chain development can work together.

For years, smart-contract developers have faced a trade-off. AI assistants could speed up coding and security reviews, but only if developers uploaded their most sensitive source code to external servers. That meant exposing intellectual property, confidential logic and even potential vulnerabilities. In an industry where trust is everything, this risk held many teams back from using AI at all.

ChainGPT’s Solidity-LLM aims to solve that problem. It is a specialised large language model trained on over 650,000 curated Solidity contracts, giving it a deep understanding of how real smart contracts are structured, optimised and secured. And now, by running inside SecretVM, the Confidential Virtual Machine that powers Secret Network’s encrypted compute layer, the model can assist developers without ever revealing their code to outside parties.

“Confidential computing is no longer an abstract concept,” said Luke Bowman, COO of the Secret Network Foundation. “We've shown that you can run a complex AI model, purpose-built for Solidity, inside a fully encrypted environment and that every inference can be verified on-chain. This is a real milestone for both privacy and decentralised infrastructure”.

SecretVM makes this workflow possible by using hardware-backed encryption to protect all data while computations take place. Developers don’t interact with the underlying hardware or cryptography. Instead, they simply work inside a private, sealed environment where their code stays invisible to everyone except them—even node operators. For the first time, developers can generate, test and analyse smart contracts with AI while keeping every detail confidential.

This shift opens new possibilities for the broader blockchain community. Developers gain a private coding partner that can streamline contract logic or catch vulnerabilities without risking leaks. Auditors can rely on AI-assisted analysis while keeping sensitive audit material protected. Enterprises working in finance, healthcare or governance finally have a path to adopt AI-driven blockchain automation without raising compliance concerns. Even decentralised organisations can run smart-contract agents that make decisions privately, without exposing internal logic on a public chain.

The system also supports secure model training and fine-tuning on encrypted datasets. This enables collaborative AI development without forcing anyone to share raw data—a meaningful step toward decentralised and privacy-preserving AI at scale.

By combining specialised AI with confidential computing, ChainGPT and Secret Network are shifting the trust model of on-chain development. Instead of relying on centralised cloud AI services, developers now have a verifiable, encrypted environment where they keep full control of their code, their data and their workflow. It’s a practical solution to one of blockchain’s biggest challenges: using powerful AI tools without sacrificing privacy.

As the technology evolves, the roadmap includes confidential model fine-tuning, multi-agent AI systems and cross-chain use cases. But the core advancement is already clear: developers now have a way to use AI for smart contract development that is fast, private and verifiable—without compromising the security standards that decentralised systems rely on.

Keep Reading

AI

How Analog Devices Is Turning Hardware Into Intelligence?

The upgraded CodeFusion Studio 2.0 simplifies how developers design, test and deploy AI on embedded systems.

Updated

November 27, 2025 3:26 PM

Illustration of CodeFusion Studio™ 2.0 showing AI, code and chip icons. PHOTO: ANALOG DEVICES, INC.

Analog Devices (ADI), a global semiconductor company, launched CodeFusion Studio™ 2.0 on November 3, 2025. The new version of its open-source development platform is designed to make it easier and faster for developers to build AI-powered embedded systems that run on ADI’s processors and microcontrollers.

“The next era of embedded intelligence requires removing friction from AI development”, said Rob Oshana, Senior Vice President of the Software and Digital Platforms group at ADI. “CodeFusion Studio 2.0 transforms the developer experience by unifying fragmented AI workflows into a seamless process, empowering developers to leverage the full potential of ADI's cutting-edge products with ease so they can focus on innovating and accelerating time to market”.

The upgraded platform introduces new tools for hardware abstraction, AI integration and automation. These help developers move more easily from early design to deployment.

CodeFusion Studio 2.0 enables complete AI workflows, allowing teams to use their own models and deploy them on everything from low-power edge devices to advanced digital signal processors (DSPs).

Built on Microsoft Visual Studio Code, the new CodeFusion Studio offers built-in checks for model compatibility, along with performance testing and optimization tools that help reduce development time. Building on these capabilities, a new modular framework based on Zephyr OS lets developers test and monitor how AI and machine learning models perform in real time. This gives clearer insight into how each part of a model behaves during operation and helps fine-tune performance across different hardware setups.

Additionally, the CodeFusion Studio System Planner has also been redesigned to handle more device types and complex, multi-core applications. With new built-in diagnostic and debugging features — like integrated memory analysis and visual error tracking — developers can now troubleshoot problems faster and keep their systems running more efficiently.

This launch marks a deeper pivot for ADI. Long known for high-precision analog chips and converters, the company is expanding its edge-AI and software capabilities to enable what it calls Physical Intelligence — systems that can perceive, reason, and act locally.  

“Companies that deliver physically aware AI solutions are poised to transform industries and create new, industry-leading opportunities. That's why we're creating an ecosystem that enables developers to optimize, deploy and evaluate AI models seamlessly on ADI hardware, even without physical access to a board”, said Paul Golding, Vice President of Edge AI and Robotics at ADI. “CodeFusion Studio 2.0 is just one step we're taking to deliver Physical Intelligence to our customers, ultimately enabling them to create systems that perceive, reason and act locally, all within the constraints of real-world physics”.